

Description

The 843ER Super Shield[™] Silver Coated Copper Epoxy Conductive Coating is a two-part system pigmented with highly conductive silver coated copper flake. It cures in 24 hours at room temperature or two hours at 80 °C. The cured coating is smooth and extremely hard. It is abrasion, scratch, and mar resistant. It also provides good chemical resistance and adheres strongly to plastics, including chemically resistant plastics.

Applications & Usages

This is a highly conductive coating for applications requiring extreme durability. It is suitable for use in military, automotive, aerospace, oil and gas applications, as well as on engines and aluminum flanges. It is an excellent choice in applications requiring a conductive coating with strong bonding to metal surfaces.

Benefits and Features

- Provides excellent EMI/RFI shielding across a broad range of frequencies
- Volume resistivity of 0.0018 Ω·cm
- Very strong adhesion to plastic, metal, and many other surfaces
- Extremely durable; vibration, abrasion, and impact resistant
- Will not scratch or flake
- Strong chemical resistance

Usage Parameters

Properties	Value
Working Life @22°C [72 °F]	8 h
Recoat Time @22°C [72 °F]	3 min
Cure Time @22 °C [72 °F]	Heat cure only
Cure Time @65 °C [149 °F]	4 h
Cure Time @80 °C [176 °F]	2 h
Shelf Life	1 y
Theoretical HVLP Spray	≤31 100 cm ² /L
Coverage ^{a)}	≤3 m²/L
	≤18 200 in ² /gal
	≤120 ft²/gal

a) Idealized estimate based on a coat thickness of 50 μ m [2.0 mil] and 65% transfer efficiency.

Temperature Ranges

Properties	Value
Constant Service	-40 to 120 °C
Temperature	[-40 to 248 °F]
Intermittent Temperature	-60 to 130 °C
Limits	[-76 to 266 °F]
Storage Temperature	16 to 27 °C
Limits ^{b)}	[60 to 80 °F]

b) The product must stay within the storage temperature limits stated.

843ER

Principal Components

Name	CAS Number
Part A: 2-Butanone	78-93-3
Silvered Copper	7440-22-4 + 7440-50-8
Bisphenol-A epoxy resin	25068-38-6
1-Butanol	71-36-3
Propan-2-ol	67-63-0
Part B: 2-Butanone	78-93-3
Polyamide Polymer	68410-23-1
Propan-2-ol	67-63-0
1-Butanol	71-36-3
Triethylenetetramine	112-24-3

Properties of Cured 843ER

Physical Proper	ties	Method	Value	
Color		Visual	Metallic brown	
Resin Technology	,	—	Ероху	
Conductive Filler		—	Silver coated copp	er
Density @25 °C [[77 °F]	ASTM D 792	1.0 g/mL	
Mechanical Pro	perties	Method	Value	
Adhesion ^{a)}		ASTM D3359	5B	
Pencil Hardness ^a)	ASTM D3363	6H, hard	
Electric & Magn	etic Properties	Method	Value	
			Resistance	Conductance
Volume Resistivit	y @0.078"	Method 5011.5 in MIL-STD-883H	1.80 x 10⁻³ Ω⋅cm	556 S/cm
Surface Resistance ^{b)}		MG-ELEC-121		
1 coat @2 mil		MG-ELEC-121	0.26 Ω/sq	3.8 S
	2 coats @4 mil	MG-ELEC-121	0.19 Ω/sq	5.3 S
Magnetic class		—	Diamagnetic (Non-magnetic)	
Relative Permeab	oility	—	<1.0	
Shielding Attenuation for 51 μ m [2.0 mil]		IEEE STD 299-1997		
>10 to 100 kHz		IEEE STD 299-1997	84 dB to 89 dB	
>100 kHz to 1 MHz		IEEE STD 299-1997	67 dB to 87 dB	
>1 MHz to 10 MHz		IEEE STD 299-1997	42 dB to 62 dB	
	>10 MHz to 100 MHz	IEEE STD 299-1997	34 dB to 54 dB	
	>100 MHz to 1 GHz	IEEE STD 299-1997	54 dB to 65 dB	
>1 GHz to 10 GHz		IEEE STD 299-1997	54 dB to 63 dB	
>10 GHz to 18 GHz		IEEE STD 299-1997	43 dB to 64 dB	

843ER

Environmental & Ageing Study	Method	Value
Salt Fog Test @35 °C [95 °F], 96 h ^{a)}	ASTM B117-2011	
Resistivity before	MG-ELEC-120	150 mΩ/sq
Resistivity after	MG-ELEC-120	730 mΩ/sq
% Conductivity after	MG-ELEC-120	20%
Cross-Hatch Adhesion	ASTM D3359-2009	0B
Cracking, unwashed area	ASTM D661-93	None
Visual Color, unwashed area	ASTM D1729-96	Discoloration, oxidized

Note: Properties measured on samples cured for 30 minutes at room temperature and 2 h at 80 °C.

a) Tested on acrylonitrile butadiene styrene (ABS) material.

b) Surface resistance is given in Ω /sq and the corresponding conductance in Siemens (S or Ω^{-1})

The coating shielding attenuation is plotted in Figure 1.

Shielding Attenuation

Figure 1. Attenuation of 843ER coating at different frequencies

843ER

Properties of Uncured 843ER

Physical Property	Mixture			
Color	Metallic brown			
Density	1.0 g/mL			
Mix Ratio by Weight (A:B)	100:28			
Mix Ratio by Volume (A:B)	100:36			
Solids Content (w/w)	30%			
Physical Property	Part A	Part B		
Color	Metallic brown	Clear, amber		
Viscosity ^{a)} @25°C [77 °F]	35 cP [0.035 Pa⋅s]	9.0 cP [0.009 Pa⋅s]		
Density	1.2 g/mL	0.9 g/mL		
Flash Point	≥-3 °C [≥26.6 °F]	≥-3 °C [≥26.6 °F]		
Odor	Mild	Ammonia-like		

a) Brookfield viscometer at 100 RPM with spindle LV S61

Compatibility

Chemical—Silver coated copper flakes are resistant to oxidation, except in environments that contain oxidizers, H_2S , or ozone, which tarnish their surface. Also avoid hydrochloric acid or other strong acids which can react with the metal filler.

Long term chemical exposure to solvents usually leads to negligible absorption and swelling, except in a few cases. For a few very aggressive organic solvents, the degree of softening and swelling can lead to fracturing.

<u>ATTENTION!</u> Perform a compatibility test in a representative environment prior to use to determine if other incompatibilities may be present.

Adhesion—The 843ER epoxy coating adheres to most materials found on printed circuit assemblies; however, it is not compatible with contaminants like water, oil, and greasy flux residues that may affect adhesion. If contamination is present, clean the printed circuit assembly with electronic cleaner such as MG Chemicals 4050 Safety Wash, 406B Superwash, or 824 Isopropyl Alcohol.

Storage

Store between 16 and 27 °C [60 and 80 °F] in dry area away from sunlight.

Health, Safety, and Environmental Awareness

Please see the 843ER **Safety Data Sheet** (SDS) parts A and B for more details on transportation, storage, handling and other security guidelines.

Environmental Impact: The calculated VOC (Volatile Organic Compound) content is 52% (627 g/L) for part A and 67% (573 g/L) part B. The calculated VOC (Volatile Organic Compound) of the mixture is 76% [779 g/L]. Reactive components become part of the solid epoxy; therefore, they are no-longer VOCs in their final form.

Health and Safety: Both 843ER parts, A and B, are classified as highly flammable liquid and vapor.

Wear safety glasses or goggles and disposable polyvinyl chloride, neoprene, or nitrile gloves while handling liquids. Part A & B can cause eye damage and skin irritation. Skin sensitization may occur after repeated or prolonged exposures.

Inhalation can cause dizziness or drowsiness. Use in well-ventilated area or outdoors.

Wash hands thoroughly after use or if skin contact occurs. Do not ingest. Avoid breathing vapors, mist, or spray.

The cured coating—in a non-dust form—presents no classifiable hazard.

Part A

HMIS® RATING

Part B

HMIS® RATING

Approximate HMIS and NFPA Risk Ratings Legend: 0 (Low or none); 1 (Slight); 2 (Moderate); 3 (Serious); 4 (Severe)

NFPA® 704 CODES

Application Instructions

Follow the procedure below for best results. If you have little or no experience with the 843ER epoxy coating, please follow the long instructions instead. The short instructions provided here are not suitable for first time users.

Equipment and Supplies

- Mixing spatulas and mixing container
- Clean paint brush **OR** HVLP spray gun with agitator cup **OR** dip tank system
- Thinner/Cleaner solvent (for cleaning brush, spray gun, or spills)
- Personal protection equipment (See 843ER-2 parts SDS)

Preparation

Clean and dry the surface of the substrate to remove oil, dust, water, solvents, and other contaminants.

To prepare 100:28 (A:B) epoxy mixture

- Scrape any settled material in the *Part A* container, and stir until homogenous.
- Scrape any settled material in the *Part B* container, and stir until homogenous.
- Weigh a desired amount of pre-stirred **A** into a mixing container.
- Multiply the measured weight of *A* by **0.28** and add this amount of pre-stirred *B* to the mixing container.
- Mix thoroughly and pour into a clean, spray gun cup with agitator.

Spray Gun Application Instructions

Read the procedure below fully and make necessary adjustments to get the required coat thickness for your needs. Typically, one coat results in a dry film thickness of roughly 2 mil [51 μ m].

Spray Equipment

Use a HVLP (high-volume low pressure) spray gun and the initial settings described in the following table. Adjust these settings and recommendations as required.

Initial Setting Recommendations

Air Cap	#3 HVLP		
Pressure	<i>Inlet</i> 23 psi	Air flow 13.5 SCFM ^{a)}	<i>Air cap</i> 10 psi
Fluid Tip	1.3 mm [0.051"]	1.5 mm [0.059"] ^{b)}	

Note: These recommendations are based on a generic paint gun and may differ by brands. Please consult your spray gun manufacturer's guide.

a) SCFM = standard cubic foot per minute

b) If no or reduced let down is performed, this may be a better tip choice.

To apply the coating

- 1. Spray a test pattern. This step ensures good flow quality and helps establish appropriate distance to avoid runs.
- 2. At a distance of 23 to 30 cm (9 to 12 inches), spray a thin and even coat onto a vertical surface. For best results, use spray-and-release strokes with an even motion to avoid excess paint in one spot. Start and end each stroke off the surface.
- 3. Wait 3 minutes and spray another coat. The delay avoids trapping solvent between coats.
- 4. Apply additional coats until desired thickness is achieved. Go back to Step 3.
- 5. Let dry for 5 minutes (flash off time) at room temperature.

To room temperature cure the 843ER epoxy

Heat cure only.

To heat cure the 843ER epoxy

Put in oven at 65 °C [149 °F] for 4 hours

-OR-

Put in oven at 80 °C [176 °F] for 2 hours.

TIP! If you don't have an agitator in your spray gun, swirling the paint gun container while waiting prevents settling.

ATTENTION!

- Coats that are applied too thick cause runs and hampers solvent evaporation. Apply many thin wet coats rather than a single thick coat.
- \circ $\,$ Spraying onto horizontal surfaces is not recommended due to possible uneven settling of metallic filler.

Packaging and Supporting Products

Cat. No.	Packaging	Net Volume		Net Weight		Packaging Weight	
843ER-800ML	Can	810 mL	1.71 pt	895 g	1.97 lb	1.7 kg	3.7 lb
843ER-3.25L	Can	3.25 L	6.87 pt	3.59 kg	7.92 lb	4.5 kg	9.9 lb

Thinners & Conductive Coating Removers

- Thinner: Cat. No. 435-1L, 435-4L
- Thinner 1: Cat. No. 4351-1L, 4351-4L

Technical Support

Contact us regarding any questions, improvement suggestions, or problems with this product. Application notes, instructions, and FAQs are located at <u>www.mgchemicals.com</u>.

Email: support@mgchemicals.com

Phone: +(1) 800-340-0772 (Canada, Mexico & USA) +(1) 905-331-1396 (International) Fax: +(1) 905-331-2862 or +(1) 800-340-0773

Mailing address: Manufacturing & Support 1210 Corporate Drive Burlington, Ontario, Canada L7L 5R6 **Head Office** 9347–193rd Street Surrey, British Columbia, Canada V4N 4E7

Disclaimer

This information is believed to be accurate. It is intended for professional end users having the skills to evaluate and use the data properly. *M.G. Chemicals Ltd.* does not guarantee the accuracy of the data and assumes no liability in connection with damages incurred while using it.